3-Morpholinopropyl isothiocyanate is a novel synthetic isothiocyanate that strongly induces the antioxidant response element-dependent Nrf2-mediated detoxifying/antioxidant enzymes in vitro and in vivo.
نویسندگان
چکیده
The induction of NF-E2-related factor-2 (Nrf2)-mediated detoxifying/antioxidant enzymes is recognized as an effective strategy for cancer chemoprevention. Here, we report that 3-morpholinopropyl isothiocyanate (3MP-ITC) is an exceptionally strong chemical inducer of these enzymes. Exposure of 3MP-ITC in HepG2C8 cells not only induced endogenous Nrf2 protein but also suppressed endogenous Kelch-like ECH-associated protein 1, resulting in an increased nuclear accumulation of Nrf2. Using chemical inhibitors of protein synthesis (cycloheximide) and 26S proteosomal degradation (MG-132), we observed that the induction of Nrf2 protein by 3MP-ITC appeared to be post-translationally regulated. 3MP-ITC activated ERK1/2 and JNK1/2 and the activation of antioxidant response element (ARE) by 3MP-ITC was significantly attenuated by chemical inhibition of PKC and PI3K signaling pathways in HepG2C8 cells. Treatment with 3MP-ITC significantly depleted the intracellular level of glutathione (GSH) in HepG2C8 cells and oral administration of 3MP-ITC increased the protein expression of hepatic NAD[P]H:quinone oxidoreductase-1 and Nrf2 in Nrf2 (+/+) but not in Nrf2 (-/-) mice, whereas UDP-glucuronosyl transferase 1A1 was induced in both genotypes. Our results indicate that 3MP-ITC is a novel ITC that strongly induces Nrf2-dependent ARE-mediated detoxifying/antioxidant enzymes in vitro and in vivo via the Nrf2 signaling pathway coupled with GSH depletion and activation of multiple signaling kinase pathways, which could be potentially useful agent for cancer chemoprevention.
منابع مشابه
The Ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway.
Nrf2 plays a critical role in the regulation of cellular oxidative stress. MEK-ERK activation has been shown to be one of the major pathways resulting in the activation of Nrf2 and induction of Nrf2 downstream targets, including phase II detoxifying/antioxidant genes in response to oxidative stress and xenobiotics. In this study, IQGAP1 (IQ motif-containing GTPase-activating protein 1), a new N...
متن کاملPhosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription.
Nrf2, a basic leucine zipper transcription factor, is an essential activator of the coordinated transcription of genes encoding antioxidant enzymes and phase II detoxifying enzymes through the regulatory sequence termed antioxidant response element (ARE). Recently we reported evidence for the involvement of protein kinase C (PKC) in phosphorylating Nrf2 and triggering its nuclear translocation ...
متن کاملMechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2.
The up-regulation of phase II detoxifying and stress-responsive genes is believed to play an important role in cancer prevention, and many natural compounds have been shown to be potent inducers of these genes. Previous studies showed that the antioxidant responsive element (ARE), found in these genes, can be bound by the transcription factor Nrf2, and is responsive to the activation by chemopr...
متن کاملNovel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway
Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN...
متن کاملPhenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model
The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2008